Extensions 1→N→G→Q→1 with N=C3xC18 and Q=C32

Direct product G=NxQ with N=C3xC18 and Q=C32
dρLabelID
C33xC18486C3^3xC18486,250

Semidirect products G=N:Q with N=C3xC18 and Q=C32
extensionφ:Q→Aut NdρLabelID
(C3xC18):1C32 = C2xC34.C3φ: C32/C1C32 ⊆ Aut C3xC1854(C3xC18):1C3^2486,197
(C3xC18):2C32 = C2xHe3.C32φ: C32/C1C32 ⊆ Aut C3xC18549(C3xC18):2C3^2486,216
(C3xC18):3C32 = C2xHe3:C32φ: C32/C1C32 ⊆ Aut C3xC18549(C3xC18):3C3^2486,217
(C3xC18):4C32 = C2x3- 1+4φ: C32/C1C32 ⊆ Aut C3xC18549(C3xC18):4C3^2486,255
(C3xC18):5C32 = C6xC32:C9φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18):5C3^2486,191
(C3xC18):6C32 = C6xHe3.C3φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18):6C3^2486,211
(C3xC18):7C32 = C6xHe3:C3φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18):7C3^2486,212
(C3xC18):8C32 = C3xC6x3- 1+2φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18):8C3^2486,252
(C3xC18):9C32 = C6xC9oHe3φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18):9C3^2486,253

Non-split extensions G=N.Q with N=C3xC18 and Q=C32
extensionφ:Q→Aut NdρLabelID
(C3xC18).1C32 = C2xC27:C9φ: C32/C1C32 ⊆ Aut C3xC18549(C3xC18).1C3^2486,82
(C3xC18).2C32 = C2xC32.He3φ: C32/C1C32 ⊆ Aut C3xC18549(C3xC18).2C3^2486,88
(C3xC18).3C32 = C2xC32.5He3φ: C32/C1C32 ⊆ Aut C3xC18549(C3xC18).3C3^2486,89
(C3xC18).4C32 = C2xC32.6He3φ: C32/C1C32 ⊆ Aut C3xC18549(C3xC18).4C3^2486,90
(C3xC18).5C32 = C2xC9:He3φ: C32/C1C32 ⊆ Aut C3xC18162(C3xC18).5C3^2486,198
(C3xC18).6C32 = C2xC32.23C33φ: C32/C1C32 ⊆ Aut C3xC18162(C3xC18).6C3^2486,199
(C3xC18).7C32 = C2xC9:3- 1+2φ: C32/C1C32 ⊆ Aut C3xC18162(C3xC18).7C3^2486,200
(C3xC18).8C32 = C2xC33.31C32φ: C32/C1C32 ⊆ Aut C3xC18162(C3xC18).8C3^2486,201
(C3xC18).9C32 = C2xC92:7C3φ: C32/C1C32 ⊆ Aut C3xC18162(C3xC18).9C3^2486,202
(C3xC18).10C32 = C2xC92:4C3φ: C32/C1C32 ⊆ Aut C3xC18162(C3xC18).10C3^2486,203
(C3xC18).11C32 = C2xC92:5C3φ: C32/C1C32 ⊆ Aut C3xC18162(C3xC18).11C3^2486,204
(C3xC18).12C32 = C2xC92:8C3φ: C32/C1C32 ⊆ Aut C3xC18162(C3xC18).12C3^2486,205
(C3xC18).13C32 = C2xC92:9C3φ: C32/C1C32 ⊆ Aut C3xC18162(C3xC18).13C3^2486,206
(C3xC18).14C32 = C2xC32.C33φ: C32/C1C32 ⊆ Aut C3xC18549(C3xC18).14C3^2486,218
(C3xC18).15C32 = C2xC9.2He3φ: C32/C1C32 ⊆ Aut C3xC18549(C3xC18).15C3^2486,219
(C3xC18).16C32 = C2xC92:C3φ: C32/C3C3 ⊆ Aut C3xC18543(C3xC18).16C3^2486,85
(C3xC18).17C32 = C2xC92:2C3φ: C32/C3C3 ⊆ Aut C3xC18543(C3xC18).17C3^2486,86
(C3xC18).18C32 = C2xC92.C3φ: C32/C3C3 ⊆ Aut C3xC18543(C3xC18).18C3^2486,87
(C3xC18).19C32 = C2xC92:3C3φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18).19C3^2486,193
(C3xC18).20C32 = C18xHe3φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18).20C3^2486,194
(C3xC18).21C32 = C6xC3.He3φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18).21C3^2486,213
(C3xC18).22C32 = C2xC9.He3φ: C32/C3C3 ⊆ Aut C3xC18543(C3xC18).22C3^2486,214
(C3xC18).23C32 = C2xC9.4He3φ: C32/C3C3 ⊆ Aut C3xC18543(C3xC18).23C3^2486,76
(C3xC18).24C32 = C2xC9.5He3φ: C32/C3C3 ⊆ Aut C3xC181623(C3xC18).24C3^2486,79
(C3xC18).25C32 = C2xC9.6He3φ: C32/C3C3 ⊆ Aut C3xC181623(C3xC18).25C3^2486,80
(C3xC18).26C32 = C6xC9:C9φ: C32/C3C3 ⊆ Aut C3xC18486(C3xC18).26C3^2486,192
(C3xC18).27C32 = C18x3- 1+2φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18).27C3^2486,195
(C3xC18).28C32 = C6xC27:C3φ: C32/C3C3 ⊆ Aut C3xC18162(C3xC18).28C3^2486,208
(C3xC18).29C32 = C2xC27oHe3φ: C32/C3C3 ⊆ Aut C3xC181623(C3xC18).29C3^2486,209
(C3xC18).30C32 = C2xC27:2C9central extension (φ=1)486(C3xC18).30C3^2486,71
(C3xC18).31C32 = C2xC32:C27central extension (φ=1)162(C3xC18).31C3^2486,72
(C3xC18).32C32 = C2xC9:C27central extension (φ=1)486(C3xC18).32C3^2486,81

׿
x
:
Z
F
o
wr
Q
<